X For You Feed Algorithm
This repository contains the core recommendation system powering the “For You” feed on X. It combines in-network content (from accounts you follow) with out-of-network content (discovered through ML-based retrieval) and ranks everything using a Grok-based transformer model.
Note: The transformer implementation is ported from the Grok-1 open source release by xAI, adapted for recommendation system use cases.
Table of Contents
Overview
System Architecture
Components
Home Mixer
Thunder
Phoenix
Candidate Pipeline
How It Works
Pipeline Stages
Scoring and Ranking
Filtering
Key Design Decisions
License
Overview
The For You feed algorithm retrieves, ranks, and filters posts from two sources:
In-Network (Thunder): Posts from accounts you follow
Out-of-Network (Phoenix Retrieval): Posts discovered from a global corpus
Both sources are combined and ranked together using Phoenix, a Grok-based transformer model that predicts engagement probabilities for each post. The final score is a weighted combination of these predicted engagements.
We have eliminated every single hand-engineered feature and most heuristics from the system. The Grok-based transformer does all the heavy lifting by understanding your engagement history (what you liked, replied to, shared, etc.) and using that to determine what content is relevant to you.
System Architecture
┌─────────────────────────────────────────────────────────────────────────────────────────────┐
│ FOR YOU FEED REQUEST │
└─────────────────────────────────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────────────────────────────────┐
│ HOME MIXER │
│ (Orchestration Layer) │
├─────────────────────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────────────────────────────────────────────────────────────────────────────┐ │
│ │ QUERY HYDRATION │ │
│ │ ┌──────────────────────────┐ ┌──────────────────────────────────────────────┐ │ │
│ │ │ User Action Sequence │ │ User Features │ │ │
│ │ │ (engagement history) │ │ (following list, preferences, etc.) │ │ │
│ │ └──────────────────────────┘ └──────────────────────────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────────────────────────┐ │
│ │ CANDIDATE SOURCES │ │
│ │ ┌─────────────────────────────┐ ┌────────────────────────────────┐ │ │
│ │ │ THUNDER │ │ PHOENIX RETRIEVAL │ │ │
│ │ │ (In-Network Posts) │ │ (Out-of-Network Posts) │ │ │
│ │ │ │ │ │ │ │
│ │ │ Posts from accounts │ │ ML-based similarity search │ │ │
│ │ │ you follow │ │ across global corpus │ │ │
│ │ └─────────────────────────────┘ └────────────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────────────────────────┐ │
│ │ HYDRATION │ │
│ │ Fetch additional data: core post metadata, author info, media entities, etc. │ │
│ └─────────────────────────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────────────────────────┐ │
│ │ FILTERING │ │
│ │ Remove: duplicates, old posts, self-posts, blocked authors, muted keywords, etc. │ │
│ └─────────────────────────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────────────────────────┐ │
│ │ SCORING │ │
│ │ ┌──────────────────────────┐ │ │
│ │ │ Phoenix Scorer │ Grok-based Transformer predicts: │ │
│ │ │ (ML Predictions) │ P(like), P(reply), P(repost), P(click)… │ │
│ │ └──────────────────────────┘ │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ ┌──────────────────────────┐ │ │
│ │ │ Weighted Scorer │ Weighted Score = Σ (weight × P(action)) │ │
│ │ │ (Combine predictions) │ │ │
│ │ └──────────────────────────┘ │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ ┌──────────────────────────┐ │ │
│ │ │ Author Diversity │ Attenuate repeated author scores │ │
│ │ │ Scorer │ to ensure feed diversity │ │
│ │ └──────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────────────────────────┐ │
│ │ SELECTION │ │
│ │ Sort by final score, select top K candidates │ │
│ └─────────────────────────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────────────────────────┐ │
│ │ FILTERING (Post-Selection) │ │
│ │ Visibility filtering (deleted/spam/violence/gore etc) │ │
│ └─────────────────────────────────────────────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────────────────────────────────┐
│ RANKED FEED RESPONSE │
└─────────────────────────────────────────────────────────────────────────────────────────────┘
Components
Home Mixer
Location: home-mixer/
The orchestration layer that assembles the For You feed. It leverages the CandidatePipeline framework with the following stages:
Stage
Description
Query Hydrators
Fetch user context (engagement history, following list)
Sources
Retrieve candidates from Thunder and Phoenix
Hydrators
Enrich candidates with additional data
Filters
Remove ineligible candidates
Scorers
Predict engagement and compute final scores
Selector
Sort by score and select top K
Post-Selection Filters
Final visibility and dedup checks
Side Effects
Cache request info for future use
The server exposes a gRPC endpoint (ScoredPostsService) that returns ranked posts for a given user.
Thunder
Location: thunder/
An in-memory post store and realtime ingestion pipeline that tracks recent posts from all users. It:
Consumes post create/delete events from Kafka
Maintains per-user stores for original posts, replies/reposts, and video posts
Serves “in-network” post candidates from accounts the requesting user follows
Automatically trims posts older than the retention period
Thunder enables sub-millisecond lookups for in-network content without hitting an external database.
Phoenix
Location: phoenix/
The ML component with two main functions:
1. Retrieval (Two-Tower Model)
Finds relevant out-of-network posts:
User Tower: Encodes user features and engagement history into an embedding
Candidate Tower: Encodes all posts into embeddings
Similarity Search: Retrieves top-K posts via dot product similarity
2. Ranking (Transformer with Candidate Isolation)
Predicts engagement probabilities for each candidate:
Takes user context (engagement history) and candidate posts as input
Uses special attention masking so candidates cannot attend to each other
Outputs probabilities for each action type (like, reply, repost, click, etc.)
See phoenix/README.md for detailed architecture documentation.
Candidate Pipeline
Location: candidate-pipeline/
A reusable framework for building recommendation pipelines. Defines traits for:
Trait
Purpose
Source
Fetch candidates from a data source
Hydrator
Enrich candidates with additional features
Filter
Remove candidates that shouldn’t be shown
Scorer
Compute scores for ranking
Selector
Sort and select top candidates
SideEffect
Run async side effects (caching, logging)
The framework runs sources and hydrators in parallel where possible, with configurable error handling and logging.
How It Works
Pipeline Stages
Query Hydration: Fetch the user’s recent engagements history and metadata (eg. following list)
Candidate Sourcing: Retrieve candidates from:
Thunder: Recent posts from followed accounts (in-network)
Phoenix Retrieval: ML-discovered posts from the global corpus (out-of-network)
Candidate Hydration: Enrich candidates with:
Core post data (text, media, etc.)
Author information (username, verification status)
Video duration (for video posts)
Subscription status
Pre-Scoring Filters: Remove posts that are:
Duplicates
Too old
From the viewer themselves
From blocked/muted accounts
Containing muted keywords
Previously seen or recently served
Ineligible subscription content
Scoring: Apply multiple scorers sequentially:
Phoenix Scorer: Get ML predictions from the Phoenix transformer model
Weighted Scorer: Combine predictions into a final relevance score
Author Diversity Scorer: Attenuate repeated author scores for diversity
OON Scorer: Adjust scores for out-of-network content
Selection: Sort by score and select the top K candidates
Post-Selection Processing: Final validation of post candidates to be served
Scoring and Ranking
The Phoenix Grok-based transformer model predicts probabilities for multiple engagement types:
Predictions:
├── P(favorite)
├── P(reply)
├── P(repost)
├── P(quote)
├── P(click)
├── P(profile_click)
├── P(video_view)
├── P(photo_expand)
├── P(share)
├── P(dwell)
├── P(follow_author)
├── P(not_interested)
├── P(block_author)
├── P(mute_author)
└── P(report)
The Weighted Scorer combines these into a final score:
Final Score = Σ (weight_i × P(action_i))
Positive actions (like, repost, share) have positive weights. Negative actions (block, mute, report) have negative weights, pushing down content the user would likely dislike.
Filtering
Filters run at two stages:
Pre-Scoring Filters:
Filter
Purpose
DropDuplicatesFilter
Remove duplicate post IDs
CoreDataHydrationFilter
Remove posts that failed to hydrate core metadata
AgeFilter
Remove posts older than threshold
SelfpostFilter
Remove user’s own posts
RepostDeduplicationFilter
Dedupe reposts of same content
IneligibleSubscriptionFilter
Remove paywalled content user can’t access
PreviouslySeenPostsFilter
Remove posts user has already seen
PreviouslyServedPostsFilter
Remove posts already served in session
MutedKeywordFilter
Remove posts with user’s muted keywords
AuthorSocialgraphFilter
Remove posts from blocked/muted authors
Post-Selection Filters:
Filter
Purpose
VFFilter
Remove posts that are deleted/spam/violence/gore etc.
DedupConversationFilter
Deduplicate multiple branches of the same conversation thread
Key Design Decisions
1. No Hand-Engineered Features
The system relies entirely on the Grok-based transformer to learn relevance from user engagement sequences. No manual feature engineering for content relevance. This significantly reduces the complexity in our data pipelines and serving infrastructure.
2. Candidate Isolation in Ranking
During transformer inference, candidates cannot attend to each other—only to the user context. This ensures the score for a post doesn’t depend on which other posts are in the batch, making scores consistent and cacheable.
3. Hash-Based Embeddings
Both retrieval and ranking use multiple hash functions for embedding lookup
4. Multi-Action Prediction
Rather than predicting a single “relevance” score, the model predicts probabilities for many actions.
5. Composable Pipeline Architecture
The candidate-pipeline crate provides a flexible framework for building recommendation pipelines with:
Separation of pipeline execution and monitoring from business logic
Parallel execution of independent stages and graceful error handling
Easy addition of new sources, hydrations, filters, and scorers
License
This project is licensed under the Apache License 2.0. See LICENSE for details.

